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Scientific Objectives for
WDM Studies
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Define Warm Dense Matter (WDM)
regime
• WDM is the region in temperature (T) - density (ρ):

1) Not described as normal condensed matter, i.e., T ~ 0
2) Not described by weakly coupled plasma theory
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• Γ is the strong
coupling parameter,
the ratio of the
interaction energy
between the
particles, Vii, to the
kinetic energy, T
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The relevance of WDM arises from its
wide occurrence

• The external research areas where
WDM is important
• Astrophysical research

• Planetary Science and cool
star physics

• Virtually all plasma production
devices

• Exploding wires

• Z-pinches
• Ion-beam plasmas
• Capillary discharges

• Laser solid matter plasma

• All of these start cold and dense and
are heated
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• Interior of Jupiter now thought
to smoothly vary in ρ



From the point of view of a plasma
the defining concept is coupling

• Weakly couple plasmas are easy
• The plasma can be seen as a separate point charges
• Then the plasma is a bath in which all particles are treated as points

- even particles with structure (e.g., atoms)

• But, when either ρ increases or T decreases Γ > 1:
• Particle correlations become important

• Ionization potentials are depressed
• Energy levels shift

as T decrease

or density increases



Temperature relative to the Fermi
energy defines WDM in solid state

• The Fermi energy, EFermi, is the maximum energy level of an
e- in cold condensed matter

• When  T << EFermi = TFermi standard condensed matter
methods work

• When T ~ TFermi one gets excitation of the core
• Ion - e- correlations change and ion-ion correlations give short and long

range order
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Scientific objective for the WDM:
Measure EOS and plasma-like properties

• Topics that effect the EOS are precisely those that
effect the microscopic description of matter.

• For example, conductivity, and opacity

• The populations of all the energy levels bound and/or free need to be
determined

• The state of ionization, i.e., whether electrons are free or bound, becomes
extremely complex topic when the plasma is correlated with the ionic structure

• Thus, the EOS of WDM provides insight on the
microscopic, as well as macroscopic, state variables



WDM Studies
at

Light Sources



WDM studies as part of a progression
toward 4th generation source experiments

• First, discuss current efforts at ALS
• Present results
• Near term improvement

• Second, discuss prospects for the 4th

generation
• Illustrate use of a 4th generation source

• Third, discuss importance of an improved
3rd generation sub-picosecond capability



All WDM studies at light sources
coupled to lasers have similar needs

• Laser to heat the sample to create the WDM
• Light source to perform absorption measurements
• Detector capable appropriate time resolution
• Synchronization of the ensemble
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Preliminary WDM experiments at the ALS:
X-ray absorption of laser heated samples
• Near-edge x-ray absorption (XANES)

• a probe of electronic structure, need comparison with
calculations

• Extended x-ray absorption (EXAFS):
• a structural probe, which can determine bond

distances to 0.01 Å and the number of nearest
neighbors

• Goal:  to observe electronic structure during the
phase transitions from solid to liquid to gas

• First system:  silicon
• Liquid silicon is metallic, with coordination number of

6, a persistence of covalent bonds



Preliminary WDM experiment: ALS coupled
to a heating laser to measure absorption

• Toroidal mirror collects 3 x 0.3 mr2

• Provides 1:1 image of bend magnet source

• 240 µm (H) x 100 µm (V)

•  Photon energy range 0.1-10 keV
•  Visible light provides timing fiducial
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Setup for WDM absorption is similar to time-
resolved scattering studies at the ALS

• 5000 Å sample of Si mounted in the synchrotron beam path
• 10 ns laser at 2 J/cm2 heats the Si foil at fluences above melt
• Due to low signal an APD detector scanned the absorption



Near-edge x-ray absorption of laser
heated Si foil
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• Shift of the absorption edge:  -1.5 eV
• Qualitatively due to  increased screening of the core hole in metallic liquid



Time-resolved Si near-edge x-ray absorption

• After heating a sharp rise in absorption occur near the edge
• Edge shifts by -1.5 eV due to increased screening of core vacancy 
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New apparatus at the ALS will
improve WDM absorption experiment

• Dispersive spectrometer to utilize large bandwidth

• Femtosecond laser

• Streak camera resolution:  2 ps
• Measure after recombination of electron-hole plasma

• Measure before hydrodynamic expansion of surface

• Use thin foils (~ 1000 Å) for sample uniformity
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4th generation sources will be provide
both the laser and light source

• A 4th generation source, e.g., LCLS, will heat matter
rapidly and uniformly to generate isochores

EOS’s along ρo Al isochore 
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Using a 4th generation source to
create WDM

• For a 10x10x100 µm sample of Al
•  Ensure the sample uniformly heated use 33% of beam energy
•  Equating absorbed energy to total kinetic and ionization energy

• Generate a 10 eV solid density with ne = 2x1022 cm-3 and <Z> ~0.3

• State of material on release can be measured with a short pulse
laser

•  Estimated to be Cs ~ 1.6x106 cm/s with pressure 4 Mb
•  For 500 fs get surface movement by 80 Å

• Material rapidly and uniformly heated releases isentropically
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However, for WDM studies the next
step uses a short pulse light source

• Coupling a short pulse laser to a short
pulse light source will provide:

• Novel data on WDM

• Minimize gradients of thin foil samples

• Important steps towards understanding
WDM experimental techniques

• Short pulse heating

• Short pulse light source signal detection

• Synchronization



The short pulse laser will prove
the heating by thermal diffusion

• Samples will be thin  ( ~ 1000 Å)
• Laser rapidly heats the surface

• First, fast e- are generated, transit the sample,
create K-shell vacanies

• Later, e- conduction heats the sample

• Standard approach is to maximize laser
intensity to maximize fast e-

• Here we will minimize fast e-, maximize
uniformity



Calculations show that using a sub-ps
laser and waiting provides WDM

•One generates WDM with modest gradients using proposed laser

• 200 Å Al sample irradiated by 100 fs, 0.3 mJ laser at 1013 W/cm2
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Conclusions



The next series of experiments will
provide information on diverse topics

• Laser-Matter Interactions:
• A 100 femtosecond x-ray light source will provide first

real temporal resolution

• Warm Dense Matter:
• The absorption measurements provide time-dependent

measure of changes from solid to gas phase

• 4th generation WDM experiments:
• All the elements for the next generation are in place

• Detectors, synchronization, data handling, sample
characterization


